W-08-23-0882

•	HCAAYZ-50-12		
:	1/2		
:			
:			

W-08-23-0882

W-08-23-0882 2 11

1.			3
2.			3
3.			3
4.			4
	4.1		4
	4. 2		4
	4.3		
	4.4		4
	4.	4. 1	4
	4.	4. 2	5
5.			5
	5.1		5
	5.2		_
	5.3		6
	5.3		
6.	3.3		•
0.	6. 1		
	6	1 1	7
		1. 1 cut-of	
	6.	1. 2	7
	6. 6. 2	1. 2	7
	6. 2 6. 2	1. 2	7 8 8
	6. 2 6. 2 6.	1. 2	7 8 8 8
7	6. 2 6. 2 6. 6.	1. 2	7 8 8 8 8
7	6. 2 6. 2 6. 6.	1. 2	7 8 8 8 8 8
7	6. 2 6. 6. 6. 6. 7.1	1. 2	7 8 8 8 8 8 9
7	6. 2 6. 6. 6. 3 7.1 7. 2	1. 2 2. 1 Cut-of	7 8 8 8 8 8 9 9
7	6. 2 6. 6. 6. 6. 7.1 7. 2 7.	1. 2	7 8 8 8 8 8 9 9
7	6. 2 6. 6. 6. 6. 7.1 7. 2 7. 7.	1. 2 2. 1 2. 2	7 8 8 8 8 8 9 9
7	6. 2 6. 6. 6. 6. 7.1 7. 2 7.	1. 2	7 8 8 8 8 8 9 9
7	6. 2 6. 6. 6. 6. 7.1 7. 2 7. 7.	1. 2 2. 1 2. 2	7 8 8 8 8 8 9 9 0 0
	6. 2 6. 6. 6. 6. 7.1 7. 2 7. 7.	1. 2 2. 1 2. 2 2. 1 2. 2 2. 1 2. 2 2. 1 2. 2	7 8 8 8 8 8 9 9 0 0 1
	6. 2 6. 6. 6. 6. 7.1 7. 2 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	1. 2 2. 1 2. 2 2. 1 2. 2 2. 1 2. 1 3. 1 4. 1	7 8 8 8 8 8 9 9 0 0 1 1
	6. 2 6. 6. 6. 6. 7.1 7. 2 7. 7. 7. 7. 7.3	1. 2	7 8 8 8 8 8 9 9 0 0 1 1
	6. 2 6. 6. 6. 6. 6. 7.1 7. 2 7. 7. 7. 7. 3	1. 2	7 8 8 8 8 8 9 9 0 0 1 1 1

W-08-23-0882 3 11

1.

HCAAYZ-50-12 1/2

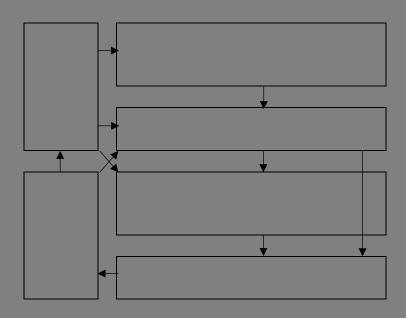
W-08-23-0882 4 11

4.

4. 1

100~5800MHz

4.2


HCAAYZ-50-12 1/2

YD/T 1092-2013

4.3

4.4

4.4.1

W-08-23-0882 5 11

W-08-23-0882 6 11

* *	HDPE	18. 61	kg
	LDPE	6. 32	kg
		0.6	kg
	JF-G103	0. 2	kg
	T2	45	kg
	В	50	kg
		E	
		5	/km

2

	70%30T+30%10T	1108	Lem
	30T	57	km

W-08-23-0882 7 11

Ecoinvent 3

IPCC 2006 2019

()

2

2022 10

2022

5.3

5 Ecoinvent 3-allocation at point of substitution- unit

Polyvinylchloride, bulk polymerised $\{GLO\}\$ market for | APOS, U Polyethylene, low density, granulate $\{GLO\}\$ market for | APOS, U Aluminium, primary, cast alloy slab from continuous casting $\{GLO\}\$ market for | APOS, U Copper-rich materials $\{GLO\}\$ market for copper-rich materials | APOS, U Electricity, medium voltage $\{CN\}\$ market group for | APOS, U Tap water $\{GLO\}\$ market group for | APOS, U

6.

6.1

1% 0.05% 5%

6. 1. 1 cut-of

0.05%

6.1.2

2022 1 1 2022 12 31

W-08-23-0882 8 11

6. 2

0.5%

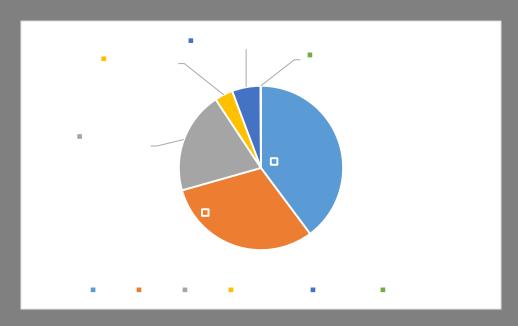
Copper and aluminum

Copper strip

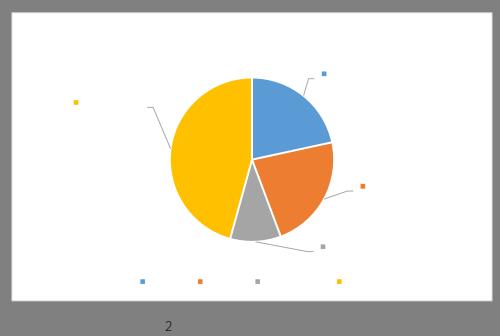
Foam polyethylene

6. 2. 1	cut-of

0. 2. 1	cut-oi		
6. 2. 2			
6. 3			
			IPCC
2019 GWF	P100		n ee
7			
Crimping Foaming	<u></u>	613 244 189	kgCO₂-eq
Sheath Ir	nspection and packaging cream transportation	169 123 21. 8 34. 5	
	nstream transportation	0. 901	
Sheath	material	113	kgCO ₂ -eq


119

52.5

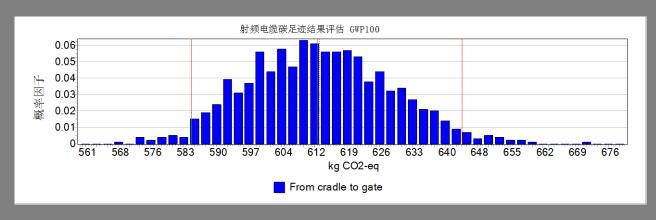

239

9 11 **W-**08-23-0882

7.1

1

7.2


7. 2. 1

W-08-23-0882 10 11

cut-of

7. 2. 2 IPCC 2021 GWP100 V1.01

3 - GWP100 613 kg CO_2 -eq 95% 612 kg CO_2 -eq 15. 7 2. 56%

7.3

W-08-23-0882 11 11

8

8.1

8.2

8.3

8.4

